Five French Scientists

We’re in Paris for a week. See last week’s post for information about the A380 we flew.

Here are five French scientists we’d like to meet while we’re in France, if only they were still alive. These scientists represent the kind of thinking we appreciate, thinking outside the box and searching for novel connections.

Marie Curie (1867-1934)

MarieCurieAmHistOkay, she was a naturalized French citizen, but Marie Curie is at the top of our list of French scientists we’d like to meet. She was the first woman to be awarded a Nobel Prize, and the only woman to win two Nobels, one in physics in 1903, shared with her husband Pierre and Henri Becquerel, and the other in chemistry in 1911 for her discovery of radium. Only she and Linus Pauling have won Nobels in two separate fields. To find out more about her, we recommend Marie Curie by Susan QuinnMarie Curie and Her Daughters by Shelley Emlingand Radioactive: Marie & Pierre Curie: A Tale of Love and Fallouta graphic biography by Lauren Redniss. We’ve written about Curie several times before (here’s one post about Curie), and we’ll undoubtedly write about her again.

René Decartes (1596-1650)

Equal parts mathematician and philosopher, Decartes had just the sort of interdisciplinary approach to the world we appreciate. He made the crucial connections between algebra and geometry upon which much of mathematical thinking followed. He also studied refraction and gave the world a scientific understanding of rainbows. He’s the guy who uttered, Cogito ergo sum. Or, I think, therefore I am. He thought that doubt and mistakes were part of learning and innovation and that reading books was like having conversations across centuries. Because we like to have any excuse to celebrate, Decartes’s birthday is next Tuesday, March 31. In fact, the town where he was born remains so proud of Decartes that they renamed the locale for him.

Prosper Ménière (1799-1862)

alanshepard_1Prosper Ménière may have more adept and interested in the humanities than in science, but he became a physician. Initially, he planned to teach at a university, but then a cholera epidemic called, and he got hands-on experience. Eventually, he headed up an institute for deaf-mutes and studied hearing loss caused by lesions inside the ear. Prosper Ménière’s disease, a disorder of the inner ear was named for this physician and is what grounded astronaut Alan Shepard for several years after he became the first American in space. Shepard’s disorder was cured by surgery so that he did fly Apollo 14. Other sufferers include Marilyn Monroe and possibly Charles Darwin and Julius Caesar.

Louis Pasteur (1822-1895)

Louis Pasteur argued that microorganisms couldn’t appear out of nothing and asserted the idea of contamination that has guided thinking about the spread of disease ever since. We are especially impressed that some of his most important work can be traced back to his understanding of alcohol fermentation in the making of wine and beer; published his Studies on Wine in 1866 and his Studies of Beer ten years lateen. He was also an early investigator of immunization and developer of specific vaccines. For a more recent and beautifully written book about the subject of immunity, we recommend Eula Biss‘s On Immunity: An Inoculation. At his own request, Pasteur’s private notebooks were kept secret long after his death, but his request was breeched by a descendant, who donated them to France’s national library for use after the descendent’s death. Those notebooks have revealed that Pasteur may have been a less-than-amiable character generally and a problematic researcher.

Henri Poincaré (1854-1912)

An epigraph from Henri Poincaré opens the first poem of Anna’s collection Constituents of Matter:

Modern man has used cause-and-effect as ancient man used the gods to give order to the Universe. This is not because it was the truest system, but because it was the most convenient.

Poincaré, as demonstrated by this statement, was a philosopher, in addition to being a mathematician and physicist. His work underpinned what would emerge as chaos theory and also laid the groundwork for topology, the geometrical study of space that focuses on connections and transformations. Poincaré worked with a team to establish international time zones, and this work led him to think about the relative speed of clocks, which, in turn, pointed to what would become Albert Einstein‘s theory of special relativity.

Interesting to Anna especially, Poincaré was a good decision-maker if he made a decision quickly, but the more he dwelled on a choice, the more difficult he had making it. A psychologist named Édouard Toulouse wrote about Poincaré‘s personality and work habits, and we think Poincaré has something to offer us as writers in this respect. For one thing, Poincaré worked on mathematics for four hours every day, one two-hour stretch in the late morning and another in the early evening, which strikes us as an ideal schedule for focusing on a large project. He would read later in the evening, a practice we like as well.

Eiffel Tower (Photo by Benh Lieu Song, Creative Commons)
Eiffel Tower (Photo by Benh Lieu Song, Creative Commons)

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s